The rapid depletion of fossil fuels and growing demand to meet climate commitments has spurred the search for alternative energy sources, highlighting the need for sustainable and renewable resources. Researchers at the Indian Institute of Science Education and Research (IISER) Tirupati have developed an efficient method of hydrogen generation from methanol and formaldehyde combination. According to an official statement, this will facilitate moving towards a ‘Hydrogen economy’.

A team of researchers has developed an innovative synthetic method to produce hydrogen gas from a mixture of methanol and paraformaldehyde under mild conditions. This method has proven particularly effective for the transfer hydrogenation of alkynes to alkenes, and the combination could be a promising hydrogen carrier, an official release said. It could pave the way for advancements in chemical synthesis and sustainable energy solutions.

This research, accepted for publication in the journal Catalysis Science & Technology, opens a new avenue for COx-free hydrogen generation, contributing to the advancement of a ‘Hydrogen economy’, the official statement said.

Hydrogen gas generation is particularly important due to its potential to replace fossil fuels in energy storage, transportation, and various chemical processes. “Methanol and paraformaldehyde, both produced on a large scale, have emerged as viable candidates for hydrogen carriers. Their abundance and widespread manufacture make them valuable for the storage and transportation of hydrogen, offering significant advantages over free hydrogen itself,” according to the statement.

The research led by Prof. Ekambaram Balaraman at IISER Tirupati has utilised commercially available nickel catalysts to produce hydrogen from methanol and paraformaldehyde without the need for bases or activators.

“This efficient catalytic system has demonstrated remarkable efficiency under mild conditions, and the generated hydrogen was successfully employed in chemo- and stereo-selective partial transfer hydrogenation of alkynes. This process enabled access to bioactive molecules with enhanced synthetic value. This research was supported by ANRF (erstwhile SERB, a statutory body of the Department of Science and Technology (DST),” the statement said.